On Causal Discovery from Time Series Data using FCI
نویسندگان
چکیده
We adapt the Fast Causal Inference (FCI) algorithm of Spirtes et al. (2000) to the problem of inferring causal relationships from time series data and evaluate our adaptation and the original FCI algorithm, comparing them to other methods including Granger causality. One advantage of FCI based approaches is the possibility of taking latent confounding variables into account, as opposed to methods based on Granger causality. From simulations we see, however, that while the FCI based approaches are in principle quite powerful for finding causal relationships in time series data, such methods are not very reliable for most practical sample sizes. We further apply the framework to microeconomic data on the dynamics of firm growth. By releasing the full computer code for the method we hope to facilitate the application of the procedure to other domains.
منابع مشابه
Marginal Causal Consistency in Constraint-based Causal Learning
Maximal Ancestral Graphs (MAGs) are probabilistic graphical models that can model the distribution and causal properties of a set of variables in the presence of latent confounders. They are closed under marginalization. Invariant pairwise features of a class of Markov equivalent MAGs can be learnt from observational data sets using the FCI algorithm and its variations (such as conservative FCI...
متن کاملCausal Discovery from Temporally Aggregated Time Series
Discovering causal structure of a dynamical system from observed time series is a traditional and important problem. In many practical applications, observed data are obtained by applying subsampling or temporally aggregation to the original causal processes, making it difficult to discover the underlying causal relations. Subsampling refers to the procedure that for every k consecutive observa...
متن کاملBayesian Probabilities for Constraint-Based Causal Discovery
We target the problem of accuracy and robustness in causal inference from finite data sets. Our aim is to combine the inherent robustness of the Bayesian approach with the theoretical strength and clarity of constraint-based methods. We use a Bayesian score to obtain probability estimates on the input statements used in a constraint-based procedure. These are subsequently processed in decreasin...
متن کاملA Hybrid Causal Search Algorithm for Latent Variable Models
Existing score-based causal model search algorithms such as GES (and a speeded up version, FGS) are asymptotically correct, fast, and reliable, but make the unrealistic assumption that the true causal graph does not contain any unmeasured confounders. There are several constraint-based causal search algorithms (e.g RFCI, FCI, or FCI+) that are asymptotically correct without assuming that there ...
متن کاملFinding Latent Causes in Causal Networks: an Efficient Approach Based on Markov Blankets
Andre Elisseeff2 ae l@ zurich.ibm .com 2 Data Analytics Group IBM Research GmbH 8803 Rlischlikon, Switzerland Causal structure-discovery techniques usually assume that all causes of more than one variable are observed. This is the so-called causal sufficiency assumption. In practice, it is untestable, and often violated. In this paper, we present an efficient causal structure-learning algorithm...
متن کامل